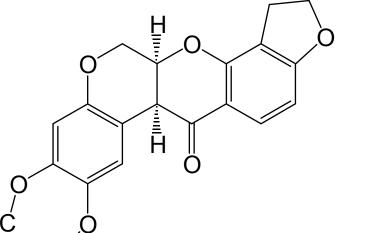


Rotenone (an "isoflavone")


• $C_{23}H_{22}O_6$

• (2*R*,6a*S*,12a*S*)-1,2,6,6a,12,12a-hexahydro-2-isopropenyl-8,9-dimethoxychromeno[3,4-*b*]furo[2,3-*h*]chromen-6-one

uses

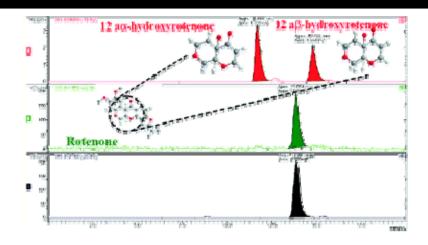
- pesticide
- insecticide
- eradication of exotic (non-native) fish
 - extracted from plants, used to catch fish
- allowed for use on organic produce
 - USDA: "non-synthetic"

H₃C

 CH_2

Rotenone in the news

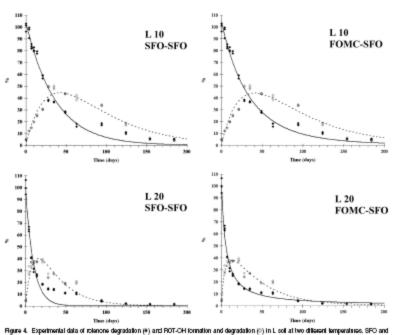
(Billings Gazette, Jan 15, 2008)

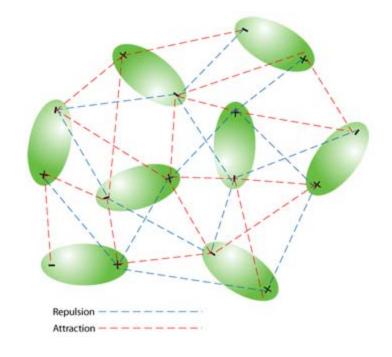

- project to remove non-native fish
 - replace with westslope cutthroat trout
- poisoning of fish in 21 lakes in Montana
- Montana Fish, Wildlife, and Parks cited
 - environmental concerns
 - U.S. Fish and Wildlife Service approves
- state commissioners voted to go ahead

- Rotenone
 - toxicity
 - mild toxicity for humans, animals
 - 143 mg kg⁻¹ (child)
 - may be related to Parkinson's Disease
 - high toxicity for fish
 - easily absorbed through gills
 - not absorbed through skin or ingestion
 - toxicity method
 - interferes with electron transport in mitochondria
 - prevents NADH from being converted into ATP

Rotenone

- persistence
 - half-life of a few hours to several weeks
 - degradation mainly by photolysis
 - breakdown to nontoxic products
- readily absorbed
 - soils
 - suspended sediment

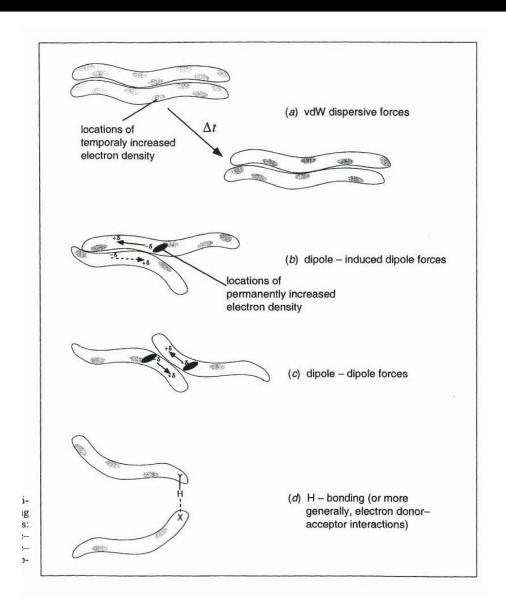



Figure 4. Experimental data of rolenone degradation (*) and ROT-OH formation and degradation (*) in L soil at two different temperatures. SPO and FOMC, for rotenone (-) and ROT-OH (- - -).

Rotenone Lake Davis

Trout come back

Molecular interactions = thermodynamics


- Partition
 - breaking and making of "bonds" during phase change
- Origins of intermolecular interactions
 - non-specific
 - London dispersive energies
 - Debye energies
 - Keesom energies
 - specific
 - polar;
 a.k.a., electron donor-acceptor

Molecular interactions = thermodynamics

- Absorption (in between)
 - A: $i:A + B:B \leftrightarrow A:A + B:i:B$
- Adsorption (surface or interface)
 - A: $i:A + A:B \leftrightarrow A:A + A:i:B$
- Intermolecular attractions (Uncharged molecules)
- Non-specific (vdW)
- Uneven electronic distributions (London)
- Dipole-induced (Debye)
- Dipole-Dipole (Keesom)
- Specific (H bonding)

Molecular interactions = thermodynamics

$$\Delta_{\rm disp}G / \text{J mol}^{-1} \approx -\text{constant (TSA}_i) \left[\frac{n_{Di}^2 - 1}{n_{Di}^2 + 2} \right] \left[\frac{n_{Di}^2 - 1}{n_{Di}^2 + 2} \right]$$

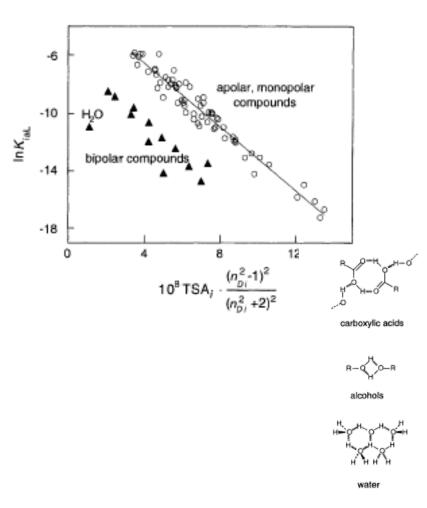
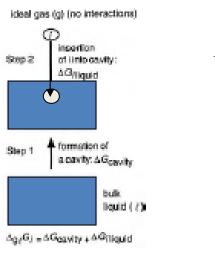



Figure 3.5 H-bonding in various pure liquids.

Equilibrium Partition Constants

At equilibrium

K (AB) = Concentration in B/Concentration in A

$$K_{iAB} = \text{constant} \bullet e^{-\Delta_{AB}G_i/RT}$$

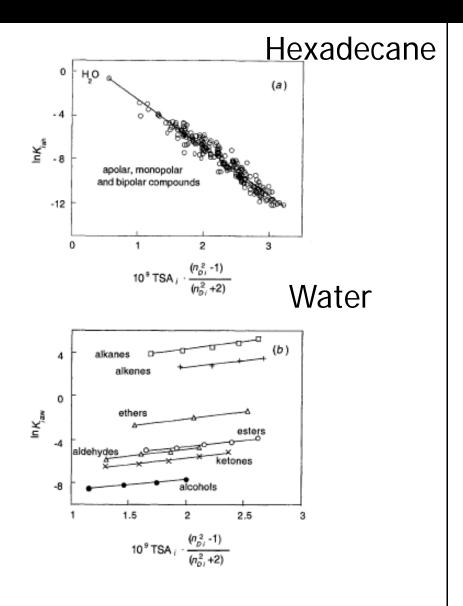
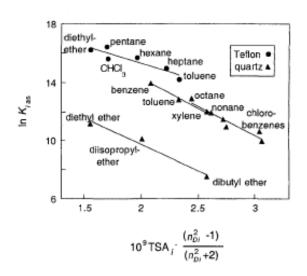
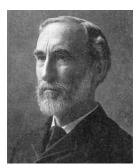





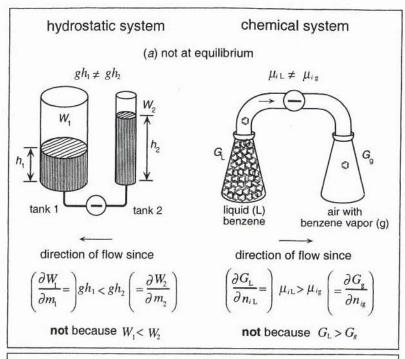
Figure 3.3 Adsorption of a compound i from an ideal gas phase to a surface.

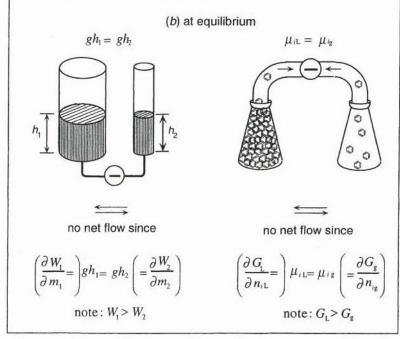
Air solvent partition/ Air solid partition

- What is chemical potential?
 - Chemical potential is the () free energy added for each added mole of a component (i) of the system

$$\mu_i$$
 $(\operatorname{J} \operatorname{mol}^{-1}) \equiv \left[\frac{\partial G}{\partial n_i}\right]_{T,P,n_{i\neq i}}$ (J) (mol)

$$\mu_i \equiv G_i = H_i - TS_i$$


- What is enthalpy?
 - The enthalpy of a molecule is a measure of the molecule's attractions to
 - its surroundings (intermolecular)
 - itself (intramolecular)



- What is entropy?
 - The entropy of a molecule is its freedom to
 - twist and turn (orientation)
 - move electrons around its structure (configuration)
 - be "random" in space (translation)

S

Hydrostatic system

- What is fugacity?
 - A measure of chemical potential
 - A tendency to "flee"

G.N. Lewis

• A change in chemical potential related to a change in vapor pressure (dp_i)

$$(d\mu_i)_T = \frac{V}{n_{ig}} dp_i$$

- What is fugacity?
 - Assuming an ideal gas...

$$p_i V = n_i RT \qquad \frac{V}{n_i} = \frac{RT}{p_i}$$

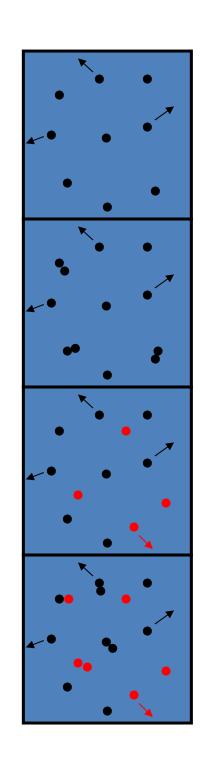
• ...and integrating with respect to some standard state (μ_i^0, p_i^0) ,

$$\mu_i = \mu_i^0 + RT \ln \left[\frac{p_i}{p_i^0} \right]$$

- Fugacity of non-ideal gases
 - higher concentrations
 - intermolecular interactions
 - gas mixtures

$$\mu_i = \mu_i^0 + RT \ln \left[\frac{f_i}{p_i^0} \right]$$

• Ideal gas:


$$f_i = p_i = p$$

• Non-ideal gas: $f_i = \theta_i p_i = \theta_i p$

Ideal gas mixture:

$$f_i = x_i p$$

• Non-ideal gas mixture: $f_i = \theta_i x_i p$

- Fugacity at the standard state
 - standard state:
 - reference state at standard conditions (STP)
 - $T = 25^{\circ}C$ (298.2 K)
 - p = 1 bar (0.987 atm)
 - for gases: pure gas at STP
 - for liquids: pure liquid at STP
 - for solids: pure solid at STP

Fugacity of liquids, ideal and non-ideal

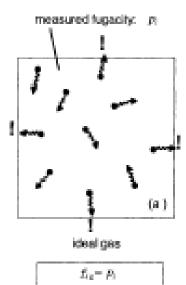
$$\mu_i = \mu_i^0 + RT \ln \left[\frac{f_i}{f_i^*} \right]$$
 the liquid's fugacity at STP...

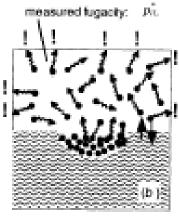
$$= \mu_i^0 + RT \ln \left[\frac{f_i}{p_{iL}^*} \right]$$
 ... is the vapor pressure of the liquid at STR

• Ideal liquid:

$$f_i = p^*_{_{iL}}$$
 the liquid's vapor pressure at STP

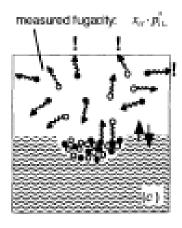
Non-ideal liquid:


$$f_i = \gamma_i p_{iL}^*$$

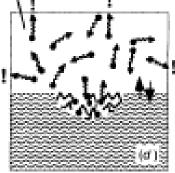

• Ideal liquid mixture:

$$f_i = x_i p_{iL}^*$$

• Non-ideal liquid mixture:


$$f_i = \gamma_i x_i p_{iL}^*$$



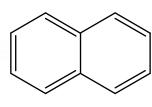


pure organic liquid i (reference state)

$$f_{i,t} = f_{i,t} = p_{i,t}$$

ideal liquid solution of i (*) in J (*)

$$f_{ij}=f_{ij}=x_{ij}\cdot p_{ij}$$


$$f_{ij} = f_{ij} = \gamma_{ii} \cdot x_{ij} \cdot p_{il}$$

Fugacity of solids, ideal and non-ideal

$$\mu_i = \mu_i^0 + RT \ln \left[\frac{f_i}{f_i^*} \right]$$
 the solid's fugacity at STP...

$$= \mu_i^0 + RT \ln \left[\frac{f_i}{p_{iS}} \right]$$
 ... is the vapor pressure of the solid at S

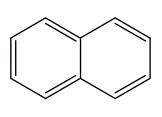
• Ideal solid:

$$f_i = p_{iS}^*$$

the solid's vapor pressure at STP

• Non-ideal solid:

$$f_i = \gamma_i p_{iS}^*$$


• Ideal solid mixture:

$$f_i = x_i p_{iS}^*$$

Non-ideal solid mixture:

$$f_i = \gamma_i x_i p_{is}^*$$

• Gases:
$$\mu_i = \mu_i^0 + RT \ln \left[\frac{f_i}{p_i^0} \right] = \mu_i^0 + RT \ln \left[\frac{\theta_i x_i p_i^0}{p_i^0} \right]$$
$$= \mu_i^0 + RT \ln \left[\theta_i x_i \right]$$

• Liquids:
$$\mu_i = \mu_i^0 + RT \ln \left[\frac{\gamma_i x_i p_{iL}^*}{p_{iL}^*} \right] = \mu_i^0 + RT \ln \left[\gamma_i x_i \right]$$

• Solids:
$$\mu_i = \mu_i^0 + RT \ln \left[\frac{\gamma_i x_i p_{iS}^*}{p_{iS}^*} \right] = \mu_i^0 + RT \ln \left[\gamma_i x_i \right]$$

$$ideal \quad nonideal$$

$$\mu_i = \mu_i^0 + RT \ln \left[\theta_i x_i \right]$$

$$\mu_i = \mu_i^0 + RT \ln \left[\gamma_i x_i \right]$$

$$a_i \quad activity$$

Partition coefficients that we will see later

Table 3.6 Examples of Simple One-Parameter Linear Free Energy Relationships (LFERs) for Relating Partition Constants and/or Partition Coefficients in Different Two-Phase Systems (Including the Pure Compound as Phase)

Partition Constants/Coefficients Correlated	LFER	Discussed in Chapter
Octanol-water partition constant and aqueous solubility of the pure liquid compound	$\log K_{iow} = -a \cdot \log C_{iw}^{\text{sat}} + b$	7
Natural organic carbon–water partition coefficient and octanol–water partition constant	$\log K_{ioc} = a \cdot \log K_{iow} + b$	9
Lipid-water partition coefficient and octanol-water partition constant	$\log K_{i\text{lipw}} = a \cdot \log K_{i\text{ow}} + b$	10
Air–solid surface partition constant and vapor pressure of the pure liquid compound	$\log K_{ias} = a \cdot \log p_{iL}^* + b$	11
Air-particle partition coefficient and air-octanol partition constant	$\log K_{iap} = a \cdot \log K_{iao} + b$	11